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Note 

Calculation of Critical Branching 
Points in Two-Parameter Bifurcation Problems* 

1. INTRODUCTION 

In certain nonlinear eigenvalue problems exhibiting two-parameter dependence, one 
encounters the phenomenon of a critical branching point: a parameter point for which 
a change in the secondary (e.g., energy) parameter causes a loss of branching in the 
primary (e.g., eigenvalue) parameter. Problems of this type arise for example in 
models of thermal ignition, in the theory of stellar structure, in chemical kinetics, and 
elsewhere. See for example the discussion in [ I]. 

Numerical computation of the critical branching point has been achieved [2] 
through the solution of an associated linear eigenvalue boundary problem. We present 
here an alternate technique based upon an extension of the work in [ 11. In particular, 
we extend the approach of [ 1 ] from a single parameter dependence to two-parameter 
dependence. This, furthermore, allows us to then solve simultaneously for both the 
primary and secondary critical parameter values in an exact criticality scheme. In the 
latter, we use an implicit calculus an order higher than that used in [ 11. We have 
applied our method in [3] to a problem of thermal ignition similar to that treated in 
[ 1 ] and [2] in order to compare several models in explosion theory. In the present 
paper we emphasize the essentials of the numerical method (not given in [3]), for its 
potential use elsewhere, as an extension of the method of [ 11. For convenience we 
shall use for the most part the nomenclature of [ 11, which treated the one-parameter 
second-order ordinary differential equation y” =f(x, y, y’, 6). 

2. THE METHOD 

Consider the two-parameter ordinary differential equation 

Y” =f(x, Y, Y’, 4 E), o<x< 1, 

subject to the boundary conditions 

Y’(O) = 0, at Y(l) + PI Y’(l) = 71. 

(‘1 

(2) 
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We have tacitly assumed for simplicity that the original boundary value problem has 
been, by scale change if necessary, set to the interval -1 < x < 1, and that the 
solution is symmetric and takes its maximum at the origin. 

Branching is then often represented in the form of bifurcation curves of 6 versus 
v, where 

rl = II Yll, = Y(O)* (3) 

Here we may assume that the solutions are all nonnegative. See Fig. 1 for a 
qualitative picture of three situations which can occur. The family of curves S(q) of 
the (primary) eigenvalue parameter 6 is also a function of the (secondary) parameter 
E: 6 = S(q, E). The condition for a branching point is 

as 
arl, 

= 0. 

In addition, the critical branching point must satisfy 

a26 7 art E = 0. 

(4) 

The difficulty in determining branching points lies in the fact that we cannot obtain 
an explicit representation for S(Q E). Instead, we have an implicit representation 
through the solution of (1), (2). Hence we must obtain expressions for (4) and (5) 
through the rules for differentiation of implicit functions (see, for example, [4]). 

FIG. 1. Bifurcation diagram indicating a curve containing the critical branching point (E = E,), a 
curve containing a branching point (E < E,,). and a curve containing no branching point (E > E,,). 
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Equation (1) may be solved as a split boundary value problem using a standard 
shooting method. This requires in addition to the initial condition specified in (2), the 
condition 

Y(O) = rt- (6) 

With q, 6, and E specified (by initial guesses), (1) is integrated to x = 1. If the 
specified parameter values represent a consistent solution to (l), (2), then the 
boundary condition at x = 1 will be satisfied; i.e., 

F@, q-, E) = a, y(l,6, Q% E) + p, y’(l, 6, V, E) - yi = 0. (7) 

Since all solutions of (l), (2) satisfy (7), the equation 

F,@(tl, El9 % E) = 0 (8) 

can be considered as an implicit representation of the bifurcation diagram. Then by 
implicit differentiation: 

(9) 

and 

aF, a2F, aF, a2F, a6 a2F, aF, aF, a2F, 
( 
---- 
asall as aq ZF 

where the variables held constant in the partial derivatives on the right-hand side of 
(10) are clear. In Eqs. (9) and (10) it is assumed that aF,/aS is nonvanishing. 
Combining (4) and (5) with (9) and (10) gives 

F,(&q,&)- aF,/aq= 0 (11) 
and 

(12) 

The parameter values at the critical branching point are obtained by the simultaneous 
solution of (8), (1 l), and (12). It should perhaps be noted at this time that we need 
the third term in (12) for the correct evaluation of the Jacobian in (17) at noncritical 
parameter values. 

The right-hand sides of (11) and (12) are obtained by differentiating (7), which 
gives 

tl3b) 
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PF, a’y 
-T=a1 ar12 all 

a’u+p - 
1 at+ ’ 

a*F, a*y a’y’ 
asall=a -+p,---, 'asaq adall 
a*1;, a*y a2.f 
-=a,~+&as'- a# 

(13c) 

(134 

(134 

Define the following variables: 

$= a2y a*yf -.-*f$'=-, 
asatj asatj 

(14c) 

(144 

(14e) 

The variables defined in (14a)-(14e) are obtained by differentiating (1). This results 
in the following auxiliary ordinary differential equations which must be integrated 
along with (1); 

fin &-&I +K-.I 

1 ay 1 af I' 

af af af y/l’=-ly,+-w:+~~ ay af (15b) 

fjn” _ a*f a2 + 2 
2 

a*f 
a$ * -f2;52, + -g (W’ 

a.w 

(15c) 

#“= [$&+&v;+-g]n,+g, 

[ 
a*f @f +- - 

ayw WI + ay,2 v/i + a’f a;+$, asay I (154 
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w; = [ a’f aff ayzw1+ cf a? 
aYaY’ wi + asay -1 w, +$Y2 

+- 
[ 

a'f a'f a'if - - 
aY ‘aY 

w1+ ayr2 wi + asay 1 af 
v/l + ayl vi 

a2f a2f 
+ ayas w’ + afas 

a'f 
VI+=. (lje> 

The initial conditions for these auxiliary equations are derived by differentiating the 
initial conditions for (1) and (2) and are given by 

G,(O) = 1; n;(o) = 0, (164 

wm = v;(o) = 03 (16b) 

Q,(O) = a;(o) = 0, (16~) 

d(O) = g’(o) = 0, (164 

y/,(O) = w;(o) = 0. (W 

The solution of (8), (1 l), and (12) is then obtained by the Newton-Raphson 
technique, i.e., 

aF, aF, aF, --- 
au ad a.5 

aF, aF, aF2 --- 
art as a& 

aF3 aF, aF, --- 
_ af7 as a& 

X 

2 

AS 

AE 

=- 

F,(6’, vi, d) 

F,@‘, $, 8) , 1 (17) 

F,(& vi, cd) 

where the superscript i denotes the iteration, and the parameter values are updated by 

4 i+‘=qi+Aq, (18) 

and similarly for 6 and E. Equation (17) is solved by a simple Gaussian elimination 
procedure. It is assumed that the Jacobian matrix in (17) is nonsingular. 

It is possible by the methods employed above to evaluate the terms in the Jacobian 
matrix by integrating additional auxiliary equations. The main drawback to doing 
this is the difficulty of performing the required differentiations of F,. We chose 
instead to evaluate the derivatives in this matrix numerically using a simple second- 
order finite difference scheme. It should be noted that any errors in evaluating these 
terms affect only the rate of convergence of the iteration, and not the accuracy of the 
final solution. The accuracy of the solution is determined by the accuracy achieved in 
integrating the ordinary differential equation system and by the iteration tolerance. 
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TABLE I 

Critical Branching Point Parameter Values 

Geometry s rl E 

j=O 1.301374 4.896548 0.245780 
j=l 3.006301 5.943244 0.242106 
j=2 5.041112 7.184944 0.238797 

3. EXAMPLE 

As an example of our scheme, it was applied in [3] to the thermal explosion 
problem treated in [ 1,2]. Also see [3] for a more complete discussion of several 
other competing explosion models treated, and the implications to the explosion 
theory. As in [ 1,2,3], the dimensionless steady state heat conduction equation for a 
semi-infinite slab (j = 0), an infinite circular cylinder (j = l), or a sphere (j = 2), 
with an Arrhenius type heat source, can be written 

y” + $-y’ + 6 exp[ y/( 1 + sy)] = 0, o<x< 1, 

subject to the boundary conditions 

Y’(O) = 0, 

%Y(l)+P,Y’(l)=Y,- 

Our code employs a standard Gear package for integrating the ODE system, and by 
setting tolerances appropriately, we can obtain accuracies well beyond those justified 
by any such physical model. 

Presented in Table I are the results for the critical branching point parameters of 
(19) for the cases j = 0, 1,2, and with the outer boundary condition JJ( 1) = 0. These 
figures are accurate to six significant digits and improve all previously found. 

TABLE II 

Course of Iteration for Geometry j = 0 

1.5OoOOO 5.oooooO 0.250000 
1.326116 4.656040 0.248303 
1.309016 4.901870 0.245962 
1.307368 4.89648 1 0.245780 
1.307374 4.896548 0.245780 
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Without our general method as put forth herein, extending that of [ 11, it would be 
extremely tedious to attempt to find the critical dimensionless activation energy 
parameter E (and then the corresponding 6 and q) by trial and error. 

The rate of convergence of the iterations was unaffected by the approximations 
used in the Jacobian matrix. From ballpark initial guesses, as shown in Table II for 
the case j = 0, in all three cases j = 0, 1,2 convergence was obtained to the desired 
accuracy in five or six iterations. This compares favorably to that found in [ 1 I. 

4. REMARKS 

In principle our method is general and can be extended to multiple primary and 
secondary parameters. However, the physical meanings of criticality, the analytical 
considerations, and the numerical schemes will all be more complicated. Similarly, 
and perhaps more easily, one can consider more dependent variables (i.e., the R” 
case). In all cases the method can fail if the associated initial value problems exhibit 
numerical instability. 
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